Tag Archives: vnx

What is a VBlock.. the latest

Overview

Back in 2009 VMware, Cisco and EMC joined forces to create a new approach to selling full datacenter  pre-configured solution stacks. Rather than simply a gentlemen’s agreement and a cross pollination of development from the three companies, it was decided they would  create a new start up business as the delivery mechanism to drive this new concept to market. This new start up, known as VCE (Virtual Computing Environment), would take to market a new range of pre-validated, pre-configured and singularly supported solution stacks called VBlock.

The purpose of a VBlock is to simplify infrastructure down to effectively units of IT and define that a workload can be supported by “a number of floor tiles” in the data centre. This approach is enabled by the fact that everything within a VBlock is pre-validated from an interoperability perspective and customizable components are reduced down to packs of Blades (compute), Disks and network components  required to connect into the upstream customer environment, means that solution design is massively simplified and can be focus to supoprting the identified workload.

Pre-Validated

VCE extensively soak test workloads and configurations available within the VBlock to reduce pre-sales time spent on researching interoperability between the Network/compute/storage layers of the Data centre. This means that defining how a workload is supported is the focus and planning phases are significantly reduced. This pre-validated approach means that power and cooling requirements are easily determined  in preparation for site deployment.

Pre Build and Pre Configured

As part of the VBlock proposition, the physical and logical build process are carried out in VCE facilities, so that time on customer site is restricted to that if integrating into the customer environment and application layer services. This reduces deployment time massively.

Single Support Presence

 Rather than dealing with the parent companies (VMware, Cisco, EMC) of VCE on a per vendor basis. VCE act as a single support presence and will own any VBlock related issue end to end. This is partly enabled by the pre-validated aspect of VBlock, as VCE have a number of VBlocks in house and provided the VBlock is constructed as per approved architectures, VCE can simulate the environment which has caused the error to decrease time to resolution.

The Technology

The technology element at the core of the VBlock consists of VMware VSphere, Cisco UCS (Cisco’s Unified compute solution), Cisco Nexus (Cisco’s Unified fabric offering) and EMC VNX’s unified storage platform. Cisco simplify management of their blade computing platform down to a single point of management (UCS Manager) which resides on the 6100 Fabric interconnects and allows for  “stateless” computing, in that it is possible to  abstract the server “personality” (Mac addresses, word wide names, firmware, etc) away from the server hardware, then create and apply these personalities on demand to any blade within the UCS system. This management system manages all aspects of the UCS system (blade/chassis management, connectivity, firmware and connectivity). Cisco’s Unified Fabric commonly refers to their Nexus range (but elements of unified fabric apply to UCS). Cisco Nexus allows both IP network traffic and fibre channel traffic to be delivered over common 10 Gigabit switches using FcoE (Fibre Channel over Ethernet). In addition the Cisco Nexus 1000v enables deployment of a virtual switch within the Vmware environment ,allowing network services to be deployed within virtual infrastructure  where it was previously only possible in the physical world.

EMC VNX is a multi protocol storage array allowing for storage connectivity via block storage technologies (iSCSI/Fibre Channel) or NAS connectivity (CIFS/NFS/pNFS), giving the end user free choice as to how storage is provided to the UCS Server estate. EMC also drive efficiencies in how capacity and performance are handled by leveraging technologies such as deduplication and thin provisioning to achieve a lower cost per gigabyte. EMC are also able to leverage solid state disk technologies to extend storage Cache or enable sub LUN level tiering of data between Solid state disk and traditional mechanical disk technologies based on data access patterns.

VMware Vsphere has provided many companies cost saving in the past but in the Vblock is leveraged to maximum effect to provide operational efficiencies with features such as dynamic and automated mobility of virtual machines between physical servers based in load, high availability and the native integration that is inherent between VMware and EMC with the VAAI API integration. This integration enables much lower SAN fabric utilisation for what were very intensive storage network operations such as storage migration. EMC Powerpath/VE is also included in the Vblock which enables true intelligent load balancing of storage traffic across the SAN fabric.

Management

VCE utilise the Ionix Unified Infrastructure Manager (UIM) as a management overlay which integrates with the Storage,Compute,Network and Virtualisation  technologies within the Vblock and allows high level automation of and operational simplicity with how resources are provisioned within the VBlock. UIM will discover resources within the VBlock and the administrator then classifies those resources. As an example High performance blades may be deemed “Gold” blades verses lower specification blades which may be classified as “silver” blades. This classification is also applied to other resources within the Vblock such as storage. Once resources have been classified, then they can be applied on a per tenancy/application/department basis which is allowed access to differing levels of Gold/silver/Bronze resources within the Vblock. UIM now also includes operational aspects which give end to end visibility of exactly which hardware within a VBlock a particular VM is utilising (Blades, disks, etc).  Native Vendor management tools can be utilised, although with the exception of Vcenter, UIM would be the point of management of 90% of VBlock tasks after initial deployment.

In Summary

The VCE approach to IT infrastructure with VBlock enables simplification of procurement and IT infrastructure  planning as VCE are able to reduce their infrastructure offerings to essentially  units of IT which are sized to support a defined workload  within a number of “floor tiles” in the data centre. These predetermined units of IT have deterministic power and cooling requirements and scale in such aware to where all VBlock instances (be it few or Many) can be managed from a single point of management and are all supported under a single instance of support. Leveraging technologies which drive efficiencies around Virtualisation, networking, storage and computing we see benefits such as higher performance in smaller physical footprints when addressing storage and compute, minimised cables management and complexity with 10GbE enabling technologies such as Fibre Channel over Ethernet and operational simplicity with the Native Vblock unified infrastructure management tool UIM.management tool UIM.


Sizing for FAST performance

So EMC Launched the VNX and changed elements of how we size for IO. We still have the traditional approach to sizing for IO in that we take our LUN’s and size for traditional RAID Groups. So lets start here first to refresh :

Everything starts with the application. So what kind of load is the application going to put on the disks of our nice shiny storage array ?

So lets say we have run perfmon or a similar tool to identify the number of disk transfers (IOPS)  occurring on a logical volume for an application. So we are sizing for a SQL DB volume which is generating 1000 IOPS for the sake of argument.

Before we get into the grit of the math. We must then decide what RAID time we want to use (as below are most common for transactional elements).

RAID 5 = Distributed parity, has a reasonably high write penalty, good usable vs raw capacity rating (equivalent of one drives usable capacity for parity) , a fair few people use this to get most bang for their buck. bear in mind that RAID 5 can suffer single drive failure (which will incur performance degradation), but will not protect from double disk failure. EMC Clariion does employ the use of hotspares, which can be proactively built when the Clariion detects a failing drive and used to substitute the failing drive when built, although if no hotspare exists or if a second drive fails during a drive rebuild or hotspare being build, you will lose your data. write penalty = 4

RAID 1/0 = Mirrored/Striped, lesser write penalty, more costly per GB as you lose 50% usable capacity to mirroring. RAID 1/0 provides better fault resilience and “rebuild” performance than RAID-5. It has better overall performance by combining the speed of RAID-0 with the redundancy of RAID-1 without requiring parity calculations. write penalty = 2

Yes there are only 2 RAID types here, but this is more to keep the concept simple.

So, depending on the RAID type we use, as certain write penalty is incurred due to mirroring or Parity operations.

Lets take a view on the bigger piece now. Our application Generates 1000 IOPS. We need to separate this into Reads and Writes :

So lets say. 20% writes Vs 80% reads. We then multiply the number of writes by the appropriate write penalty (2 for RAID 10 or 4 for RAID 5). Lets say RAID 5 is our selection :

The math is as follows :

800 Reads + (200 Writes x 4) = 1600 IOPS. This is the actual disk load we need to support.

We then divide that disk load by the IO Rating of the drive we wish to use. Generally speaking at a 4KB block size the below IO Ratings apply (this goes down as block sizes/pages to disk sizes get bigger).

EMC EFD = 2500 IOPS
15K SAS/FC = 180 IOPS
10k SAS/FC – 150 IOPS
7.2K NLSAS/SATA = 90 IOPS

The figure we are left with after dividing the disk load by the IO Rating is the number of spindles required. This is the same when sizing for sequential disk load, but we refer to MB/s and bandwidth instead of disk transfers (IOPS). Avoid using EFD for sequential data (overkill and not much benefit).

15k SAS/FC = 42 MB/s
10k SAS/FC = 35 MB/s
7.2k NLSAS – 25 MB/s

Bear in mind this does not take array cache into account and sequential writes to disk benefit massively from Cache, to the point where many papers suggest that NLSAS/SATA give comparable results to FC/SAS.

So What about FAST ?

Fast is slightly different. It Allows us to define Tier 0, Tier 1 and Tier 2 layers of disk. Tier 0 might be EFD, Tier 1 might be 15k SAS and Tier 2 might be NLSAS. When can have multiple tiers of disk residing in a common pool of storage (kind of like a raid group, but allowing for functions such as thin provisioning and tiering).

When can then create a LUN in this pool and specify that we want the LUN to start life on any given tier. As access patters to that LUN are analysed by the array over time, the LUN is split up into GB chunks and only the most active chunks utilise Tier 0 disk, the less active chunks are trickled down to our Tier 1 and Tier 2 disks in the pool.

fundamentally speaking, 90% of the IOPS for performance with the Tier 0 disk (EFD) and bulk out the capacity by splitting the remaining capacity between tier 1 and tier 2. You will find that in most cases you can service the IO with a fraction of the number of EFD disks vs if you did it all with SAS disks. I would suggest that if you know something should never require EFD such as B2D or archive data or Test/Dev, put them in a separate disk pool with no EFD.


EMC World 2011 – Las Vegas – day 1

So after the first day at EMC World what Marvels of technology have been announced ?
What groundbreaking nuggets of geeky goodness to be announced. So, first things first VPLEX ! looks like they may have cracked it..   Active/active storage over a synchronous distances, Geoclusters will never be the same again !!..   and also a slightly ambiguous announcement around integration with Hadoop opensource (more to follow on that).

What was the message of the day though ? What was this years theme..   This year EMC are talking about Big data and the cloud. Clearly recent acquisitions of Isilon and Greenplum have planted EMC’s head firmly back in the clouds.  Greenplum giving end users the ability to scale out Database architectures for data analytics to mammoth scale with Greenplums distributed node architecture and massive parallel processing capabilities. To br frank, learning about the technology was borderline mind numbing, but my god its a cool technology. Then we have large scale out NAS with Isilon and its OneFS system giving the ability to present massive NAS repositories and scale NAS on a large scale. So obviously, EMC are talking about big data.

I also had the opportunity to sit in on an NDA VNX/VNXe session and what they’re going to do is….    aaah, I’m not that stupid. But needless to say, there are some nice additions on the way, the usual thing with higher capacity smaller footprint drives and getting more IO in less U space, but also some very cool stuff on the way which will enable EMC to offer a much cheaper entry point for compliance ready storage..  watch this space.

In true style EMC threw out some interesting IDC touted metrics further justifying the need to drive storage efficiencies and re-iterating the fact that there will always be a market for storage. So, our digital universe consists of 1.2 Zettabytes of data, currently, of which 90% of that is unstructured data and that figure is predicted to grow by x44 over this decade. Also 88% of fortune 500 companies have to deal with Botnet attacks on a regular basis and have to contend with 60 Million Malware variants.  So making this relevant, the 3 main pain points of end users are; firstly our time old friend budget, then explosive data growth and securing data.

So how have EMC addressed these ? Well, budget is always a fun one to deal with, but with efficiencies in storage by way of deduplication, compression, thin provisioning and auto tiering of data, end users should get more bang for their buck. Also, EMC easing up on the rains with pricing around Avamar and the low entry point of VNXe, this should help the case. Dealing with explosive data growth again tackles with deduplication, compression, thin provisioning and auto tiering of data, but also now with more varied ways of dealing with large sums of data with technologies such as Atmos, greenplum, Isilon. Then the obvious aquisition of RSA to tie in with the security message, all be it that has had its challenges.

I’m also recently introduced the concept of a cloud architect certification track and the concept of a Data Scientist (god knows, but I’ll find out). So I went over to the proven professionals lounge and had a chat with the guys that developed the course. Essentially it gives a good foundation for steps to consider when architecting a companies private cloud, around Storage, virtualisation, networking and compute. If you’re expecting a consolidated course which covers the storage consolidate courseware, Cisco DCNI2, DCUCD course and VMware install configure manage,  then think again, but it does set a good scene as an overlay to understanding these technologies. It also delves into some concepts around cloud service change management and control considerations and the concept of a cloud maturity model (essentially EMM, but more cloud specific). I had a crack at the practice exam and passed with 68%, aside from not knowing the specific cloud maturity terms and EMC specific cloud management jargon anyone with knowledge of servers, Cisco Nexus and networking, plus virtualization shouldn’t have to many issues, but you may want to skim over the video training package.

There was also a nice shiny demo from the Virtual Geek Chad Sakkac showing the new Ionix UIM 2.1 with Vcloud integration using CSC’s cloud service to demonstrate not only the various subsets of multi tenancy, but also mobility between disparate systems. When they integrate with public cloud providers such as Amazon EC2 and Azure, then things will really hot up, but maybe we need some level of cloud standards in place ?…   but we all know the problem with standards, innovation gives way to bureaucracy and slows up…   but then again with recent cloud provider issues, maybe it couldn’t hurt to enforce a bit of policy which allows the market to slow up a little and take a more considered approach to the public cloud scenario..   who knows ?

Anyway.. watch this space..  more to come